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Abstract-~The governing equations of three-dimensional problems in transversely isotropic piezo­
electric material are composed of four second order partial differential equations. in which the
displacement components and electric potential functions are the essential unknowns, In this paper
the so-called general solutions of these equations are obtained with the aid of a set of new potential
functions which are used to express the components of displacements and the electric potential
functions, As an application of the general solution the problem of a half-space piezoelectrics acted
by a concentrated lateral shear force is solved,

L INTRODUCTION

Piezoelectric materials have been extensively used as transducers and sensors due to their
intrinsic direct and converse piezoelectric effects that take place between electric fields and
mechanical deformation, and they are playing a key role as active components in many
branches of science and technology such as electronics, infranics, navigation and biology.
For example, piezoelectric materials are acting as very important functional components
in sonar projectors, fluid monitors, pulse generators and surface acoustic wave devices.
Piezoelectric ceramic materials are used especially widely owing to their high piezoelectric
performance, but the inherent weakness of piezoelectric ceramics is its brittleness in mech­
anical behavior. During operation severe mechanical stress occurs in piezoelectrics. The
stress concentrations caused by mechanical or electric loads may lead to crack initiation
and extension, and sometimes the stress concentrations may be high enough to fracture the
parts. Meantime, piezoelectric ceramics usually have initial defects such as microcracks,
microvoids, layer-separations and inclusions, which may also bring about the failures of
components. To improve the performance and to predict the reliable service life of ceramic
piezoelectric components, it is necessary to analyse theoretically and describe accurately
the damage and fracture processes taking place in ceramic piezoelectric materials from the
angle of coupled effects of mechanics and electrics. The study in fracture mechanics of
piezoelectric ceramics has been paid more attention to in recent years. Deeg (1980) and
Pak (1987) have addressed the plane and antiplane fracture problems of piezoelectric
materials and obtained a close form solution of stress field and electric displacement near
the crack tip. With the aid of the three-dimensional eigenfunction expansion method, Sosa
and Pak (1990) have investigated the case in which the crack front is assumed to be straight
and it is located along the transversely isotropic axis of symmetry and they have discussed
the influence of electric fields to the stress field near the crack tip. Moreover, Sosa (1990)
has suggested a general method of solving plane problems of piezoelectric media with
defects. Usually cracks in piezoelectric media are of penny shape or elliptic shape, so
that an effective method to solve the three-dimensional problem of piezoelectric media is
necessary both in theoretical and practical interest. Wang (1992) has obtained the general
solutions of governing equations to three-dimensional axisymmetric problems in trans­
versely isotropic piezoelectric media and solved the problem of penny shaped cracks under
stretching loads. In this paper the general solution of governing equations to three-dimen­
sional problems in a transversely isotropic piezoelectric medium is obtained. The general
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solution is a powerful tool to solve problems such as void, inclusion and three-dimensional
cracks in piezoelectric media.

2. BASIC EQUATIONS

The governing equations of the three-dimensional piezoelectricity in the absence of
body forces and free charges can be written in compact form as follows:

(fif.} = 0,

Gif = ~(Ui.i+U,J,

Ei = - <PI' i,j, k, I = 1,2,3

where (fif' "if' D" Ui , Ei are the components, respectively, of stress, strain, electric displace­
ment, mechanical displacement and electric field, <p is the electric pontential function, and
Cilkco f i } and ekil are the elastic stiffness constants, the dielectric constants are the piezoelectric
constants, respectively. In the most general case of anisotropy, the piezoelectric material
has 45 independent constants which are 21 elastic, 6 dielectric and 18 piezoelectric constants.
In a transversely isotropic piezoelectric medium, there are 10 independent constants,
namely, 5 elastic, 2 dielectric and 3 piezoelectric constants, to determine its mechanical and
electric characteristics. In the latter case, a Cartesian system (x, y, z) is introduced and the
z-axis is perpendicular to the isotropic plane of medium. We have

aTH oa" aT,c
ox + oy + az = 0,

OL, aT lc aac
-+-'+-=0ox ay az '

aD, aD, cDc
---+-' +-=0ex ay oz '

au ov aw a<p
a, = C 11-.:;- + C I2-.:;- + c13--;;- + e3I -;;-,

ox oy oz oz

au aVOW c<p
a, =CI2-':;-+Cll~+CI3;;-+e31-;;-'

ox cy cz oz

au au aw a<p
(fc = C I3-.:;- + CI3-.:;-, + C33 -;;-, + e33 --;;-, '

ox oy OZ UZ

(I)

(2)

(3)
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(
OW au) OI.(J

D, = e I 5 ::) + -.:;- - (; I 1 ::),
ex oz ex
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(4)

Equations (1) and (2) are equilibrium equations. The piezoelectric stress constitutive
relationship is represented by eqns (3) and (4) in which the components of stress and electric
displacement are expressed by displacement and electric potential functions. Substituting
eqns (3) and (4) into (1) and (2), we have the governing differential equations as follows:

(5)

where u(x,y,z), v(x,y,z) and w(x,y,z) are the displacement components and l.(J(x,y,z) is
the electric potential function. Equations (5) are the governing equations of the three­
dimensional problems in a transversely isotropic piezoelectric medium.

3. GENERAL SOLUTION OF GOVERNING DIFFERENTIAL EQUATIONS

It seems to be extremely difficult to find the solution by means of direct integration
due to the complexity of eqns (5). But the problem may become more tractable if we
introduce a set of potential functions which could transform eqns (5) into the familiar
differential equations, as follows

at/J ox
U=--~

ex ay'
at/J ax

v = -;;- + -~'-,

oy ax
at/J

w=k l -:=;-,
oz

(6)

where, t/J(x,y,z) and X(x,y,z) are the potential functions introduced, and k] and k 2 are
unknown constants. Substituting eqns (6) into (5), we have the following equations:
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(7)

(8)

(
iJ2t/J a2t/J) e2t/J

[(eI5+e,I)+e"kl-tllk2] -- + -~ +(e"kl-t.nk2)--;::-:: = O.
ex2 or or

To three-dimensional piezoelectric problems, the terms (a2t/J/ax2)+ (a2t/J /oy2) and (a2t/J/az2)
are not identically equal to zero. Under this condition a nontrivial solution of eqns (8) is
to exist only if they are identical equations, namely,

Eliminating k l and k 2 in above equations, we obtain a cubic algebra equation of I,:

(10)

where

The three roots of eqn (10) are denoted by Ai (j = I, 2, 3) and 1. 1 is assumed to be a positive
real number, 1.2 and I"~ are either positive real numbers or a pair of conjugate complex roots
with positive real parts. Corresponding to the three roots, there are three potential functions
t/J/ (j = 1,2,3) and each of them must satisfy one of the following equations, respectively,

(11 )

Now define 1'4 as follows

Equations (7) can be rewritten as
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If we let

Ai = lis;, Z, = s,Z, i = 1,2,3,4,

then, eqns (11) and (12) become the following forms:
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(12)

(13)

(14)

(15)

It is thus clear that potential functions !/J,{x,y, z) and X(x,y, z) satisfy Laplace equation in
the coordinate systems (x,y,z,) (i = 1,2,3,4).

Substituting the values of Aj into the two expressions of eqn (9), we get k ,j and k2j
corresponding to Aj , then eqns (6) become

(16)

These are the so-called general solutions of potential functions of eqns (5) where !/Jj and X
satisfy eqns (14) and (15), respectively.

With this solution it is convenient to analyse some three-dimensional problems of
piezoelectricity in a system of cylindrical coordinates. With respect to this new coordinates
system, eqns (16) become

o I OX
Ur = or(!/JI+!/J2+!/J3)--;' of)'

I a iJx
Vo = -;. iJf)(!/J1 + !/J2+ !/J3) + or'

iJ!/J1 O!/J2 a!/J3
We = k

"
oz +k 12 oz +k 13 OZ '

(17)

Substituting (17) into (3) and (4), we have the expressions of components of stress and
electric displacement,
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(19)

wherej = 1,2,3 and summation convention with respect to the repeated index is implied.
It is extremely difficult to theoretically find the roots due to the complexities of

expressions of each coefficient in egns (10). In the above discussion, we put a limit to the
values of )'j' which is confirmed by the solution to a practical problem of ceramic piezo­
electrics. For example, the material properties of a ceramic piezoelectrics PZT-6B are
presented in Table I. Aj and Sj can be determined by egns (10) and (13),

Al = 3.92, le 2 = 0.73+0.87i, A3 = 0.73-0.87i,

SI = 0.51, S2 = 1.02-0.48i, S3 = 1.02+0.48i.

It can be found that if A2 and )'3 is a pair of conjugate complex numbers, then k 12 and k 13,

k n and k 23 are complex conjugates, and t/J 2 and t/J 3 is a pair ofcomplex conjugate functions.
Therefore, all of the displacement, electric potential, stress and electric displacement com­
ponents determined by egns (17)-(19) are real numbers.

Table I. Material properties of a piezoelectric ceramic PZT-6B

Elastic stiffness
(10 '0 Nm- 2

)

Piezoelectric coefficients
(em-')

Dielectric constants
(10- 10 Fm- I )

('11 ('33 ('44 C l1 ('13

16.8 16.3 2.71 6.0 6.0
eJl

-0.9
e.n
7.1
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Fig. I. The distributed shear force p = P/rra' acting on a circular plane.

4. A PRACTICAL EXAMPLE
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To illustrate the application of the above general solution in engineering problems, a
homogeneous half-space ceramic piezoelectrics is investigated in this section. Suppose that
its surface coincides with the isotropic plane of the medium, and an in-plane concentrated
force P acts at the point 0, we now want to solve for the components of stress and
displacement. To solve this problem we first discuss a problem with distributed shear
force p = Plna2 acting on a circular plane shown in Fig. 1. The boundary conditions
corresponding to this problem can be expressed as:

(20)

(21 )

while J,2 +Z2 -> OC!, there are

(22)

With respect to cylindrical coordinates (r, 8, z), eqns (14) can be rewritten as

(j=1,2,3).

The expressions of aoand Do determined by eqns (18) and (19) can be written as

(23)

where we adopt Zj = SjZ and expressions of a" hj are

a j = -CI3+(C33klj+e33k2Js;,

hi = -e31+(e33k IJ- f 33 k 2JS;'

Substituting eqn (23) into (20) we have

SAS 32: 1-G
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where

(24)

Equations (24) give the relationships between the potential functions l/Jj (j = 1, 2, 3, 4).
According to the above procedure, we suppose that functions l/Jj(x, y, ZI) and x(x, y, Z4)
have the following forms:

l/J)(r,e,Z)) =II(r,e,zl), )

l/J2(r,e,Z2) = Kdl(r,e,Z2)

l/J3(r,e,Z3): Kdl(r'7e,Z3),

x(r, e, Z4) - I2(r, e, ~4),

(25)

where functions II (r, e, zJ and I2(r, e, Z4) satisfy the Laplace equation in cylindrical coor­
dinate system. By using Hankel integral transforms, functions II (r, e, z;) and I2(r, e, Z4) can
be expressed in the following integral forms

where JIJ/(r~) denotes the Bessel function of the first kind of order m, ~ is the Hankel
transform parameter and fmC!;), L,nC(), Dm(() and FIJ/(!;) are arbitrary functions to be
determined by using the given boundary conditions. The value of constant f1, is

Considering eqns (25), (26) and (18) and zi = 0, we have

rcrl=~o = - mt cosme I>2 ~[Im(~)Jm_)(r!;)-fm(!;)Jm+l(rO]d!;

-,,~o sinme f: !;[Dm(OJm-l(rO-Fm(()J,n+)(rO]d!;,
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Meanwhile, eqns (21) can be written as

L,I ,.~" : "~,, [p.,,(c) co, mO+q.,,(,) ,in mA], )

LoI2~O - I [Sm(r)cosme+tm(r)smmej,
111=0
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(27)

(28)

where Pm(r), qm(r), s",(r) and tm(r) are known functions prescribed on the surface of the
half-space medium. Putting the two right-hand side terms in eqns (27) and (28) to be equal
and using Hankel inversion transforms, we obtain

I IXf",(?:,) = 2 r[ - p",(r) + t"zCr)]Jm I (rC,) dr,
o

I I'L",(C,) = 2 r[Pm(r) + t,ll(r)]Jm+ I (r~) dr,
o

I IX
D",(C,) =2 Jo r[-q"zCr)-s",(r)]J,,,_,(r?:,)dr,

I IXFm(~) = 2 r[q"zCr)-s",(r)]J",+ ,(rC,) dr.
o

The distributed forces shown Fig. I can be expressed as

(29)

p
r2,1~o = - '-J cos e,

na-

p .
r2()12~O = -J sme (0:( r:( a).

na-

It is clear that in all of Pm(r), qm(r), sm(r) and tm(r), m = 0, I, 2, ... , PI (r) and t I (r) are not
equal to zero namely

p
PI(r) = - -"

na~

p
tl(r) =-.

na2

From eqns (29), we also find that only 11«() is not equal to zero among 1",(~), L",(C,), D",(e,)
and F,IICO

P J (a~)
11 CO = - _1_,_"'-.

na <;'

Substituting eqn (30) into eqn (26), and the above result into eqn (25), we obtain

(30)
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(31 )

And lastly, substituting eqn (31) into eqn (17) and using the following expressions

lim J, (a~) = !
a~O a~ 2

we obtain

(32)

where R; = J r2 + z; (i = 1, 2, 3, 4). Making use of eqns (3), the components of stress and
electric displacement can be obtained from eqns (18) and (19). As a result, the expressions
of (In Ten TeO and Dc can be given as follows



where
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5. CONCLUSIONS
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(33)

In this paper, the general solution of three-dimensional problems of transversely
isotropic ceramic media based on potential functions is obtained. Using the general solution,
we can get the analytical expressions of stress and electric displacement in some cases of
loading in piezoelectricity. Furthermore, the general solution provides a powerful tool for
solving various three-dimensional crack problems in piezoelectric ceramic media.
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